RAG Implementation Guide: From Text to Multimodal
Madina Gbotoe
AI Enablement Lead, Operations & Education
Women Defining AI
January 2026 | Version 1.0
Who This Guide Is For
Product managers, developers, and AI practitioners building retrieval-augmented generation systems. This guide covers fundamentals through production deployment, with clear guidance on when to use basic vs advanced techniques.
To maximize the RAG system's efficiency and answer quality, it helps to clean and organize the source documents beforehand. This guide covers document preparation fundamentals and the technical considerations specific to multimodal retrieval systems.
Text RAG vs Multimodal RAG
Text RAG (standard): Only handles text. Images and tables are either ignored or converted to text descriptions before indexing. This is what most tutorials and tools (GPT4All, basic LangChain setups) implement by default.
Multimodal RAG: Handles text, images, tables, and other content types natively. Can retrieve an image directly from a text query. Requires vision-language models (GPT-4V, Claude, LLaVA) and image embeddings (CLIP, SigLIP). More complex to build and deploy.
How to use this guide: Parts 1-3 and 5-9 apply to all RAG systems. Part 4 (Multimodal Content Processing) is the upgrade path - skip it if you're building text-only RAG, or use it when you need to retrieve images and complex tables directly.
Contents
1. RAG Pipeline Overview - Required vs optional components, what does what
2. Document Preparation Fundamentals
3. Chunking Strategy
4. Multimodal Content Processing (optional upgrade)
5. Embedding and Retrieval Architecture
6. Prompt Engineering for RAG
7. Quality Metrics and Evaluation
8. Edge Cases and Special Considerations
9. Local Deployment Options
10. Production Hardening - Caching, guardrails, fallbacks, cost control
[bookmark: part1]Part 1: RAG Pipeline Overview
RAG systems range from dead simple to highly complex. Understanding the progression helps you build the right level for your use case.
True Minimum RAG (4 Components)
The absolute simplest RAG system needs only four things:
1. Document Loading: Get text from your files. Can be as simple as reading .txt files.
1. Chunking: Split text into pieces. Can be as simple as splitting by paragraph or fixed character count.
1. Search: Find relevant chunks. Can be keyword/string matching - no vectors required. Search your chunks for query words, return matches.
1. Generation: Pass retrieved chunks + query to an LLM. Get answer.
That's it. No embeddings, no vector database, no fancy infrastructure. Keyword search over text files + LLM = RAG. Good for: prototypes, tiny corpora (<50 docs), learning how RAG works.
Standard RAG (Adds Semantic Search)
Most RAG tutorials teach this level. Adds two components to enable semantic (meaning-based) search:
1. Embedding Model: Converts text chunks into vectors (lists of numbers). Similar meanings = similar vectors. Examples: OpenAI text-embedding-3, BGE, E5, Nomic Embed.
1. Vector Storage: Stores vectors and enables similarity search. Options by complexity:
0. Simple: NumPy array, FAISS in-memory, pickle files. Good for small corpora, no extra infrastructure.
0. Postgres + pgvector: Supabase, Neon, or self-hosted Postgres with pgvector extension. Great if you already use Postgres - adds vector search without a separate database.
0. Dedicated vector DBs: ChromaDB, Pinecone, Qdrant, Weaviate. Purpose-built for vector search, more features (filtering, hybrid search), but extra infrastructure.
Why upgrade? Semantic search finds relevant content even when words don't match. "How do I fix motor overheating?" finds docs about "thermal issues in engines." Keyword search would miss this.
Advanced RAG (Quality Improvements)
These improve retrieval quality but add complexity. Add them when standard RAG isn't performing well enough:
1. Hybrid search: Combine keyword (BM25) + semantic search. Best of both worlds. Catches exact matches that semantic misses.
1. Re-ranking: Retrieve more candidates (top 20-50), then use a second model to re-score and pick the best. Significantly improves precision.
1. Query expansion: Rewrite or expand the user query before searching. Helps with vague queries.
1. Parent-child retrieval: Search on small chunks (precision), return larger parent chunks (context).
1. Metadata filtering: Filter by document date, category, or source before or after vector search.
Choosing Your Level
1. Prototype / learning: Start with True Minimum. Keyword search is fine. Understand the flow before adding complexity.
1. Small corpus (<1K docs), exact terminology: Keyword search may be enough. Users search using the same terms in docs.
1. Medium corpus, varied queries: Standard RAG with semantic search. Most common setup.
1. Large corpus, high accuracy needed: Add hybrid search and re-ranking. Worth the complexity.
1. Enterprise / production: All of the above plus caching, guardrails, fallbacks (see Part 10).
Common Confusion: What Does What
These terms get mixed up constantly:
1. Embedding model (OpenAI text-embedding-3, BGE, E5): Turns text into vectors. Required for semantic search. NOT required for keyword-only RAG.
1. Vector database (Chroma, FAISS, Pinecone): Stores vectors and enables similarity search. Does NOT create embeddings - you create embeddings separately, then store them here. NOT required for keyword-only RAG.
1. Re-ranker (BGE-reranker, Cohere Rerank): Separate from embedding model. Re-scores already-retrieved results. Advanced feature, not required.
1. LangChain / LlamaIndex: Frameworks that orchestrate the pipeline. They connect your components together. Not required - you can wire components yourself with plain code.
1. GPT4All LocalDocs: All-in-one tool that bundles everything (embedding, storage, retrieval, generation). Easiest setup, least flexible.
Minimal Infrastructure (No Database Required)
For small to medium corpora with stable documents, you can skip dedicated databases entirely:
1. In-memory with FAISS: Embed your documents once, store vectors in a FAISS index in memory. Save to disk (.faiss file) for persistence. Load on startup. Works well up to ~100K chunks.
1. NumPy arrays: Store vectors as a .npy file. Load into memory, compute cosine similarity with NumPy. Brute force search is fine for <10K chunks.
1. Pickle + JSON: Serialize your chunks and vectors to files. Simple, portable, no dependencies.
1. SQLite + vectors: Store chunks in SQLite, vectors as BLOBs. Single file database, no server. ChromaDB uses this under the hood.
1. When to upgrade: Add a proper vector DB when you need frequent updates, filtering, concurrent access, or scale beyond 100K chunks.
[bookmark: part2]Part 2: Document Preparation Fundamentals
Use Clear Headings and Structure
Organize each guide with descriptive headings, subheadings, and ordered lists for steps. A well-structured document (with an outline of sections and numbered steps) is easier to chunk and leads to more coherent retrieval results. For example, ensure that "Procedure: Resetting the Device" is a heading, and the steps under it are in a numbered list.
Ensure Sequential Numbering
Double-check that any numbered steps in the documents are sequential and not broken (sometimes conversion from Word to text can mix up list numbers). Correct sequencing (1, 2, 3, ...) helps the LLM maintain the order of steps when generating the answer.
Add Transitional Phrases (With Caution)
Small additions like "After completing step 1, then..." between steps in the source text can help an LLM understand the flow.
Caution: This can backfire with chunking. If chunks split mid-sentence, you may end up with dangling fragments like "After completing step 1, then..." without the actual next step. Only add transitional phrases when: (1) your chunking strategy respects sentence/paragraph boundaries, (2) the transitions are within a single chunk, or (3) you're using parent-child chunking that preserves broader context. For procedural content that will be chunked step-by-step, keep steps self-contained instead.
Consistent Terminology
Use consistent names for the same component or issue across documents. If some guides call a part "motor" and others "engine", consider standardizing them or at least noting the synonym. Also, define abbreviations or acronyms in the text (e.g., "Electronic Control Unit (ECU)") so that queries using the full term or acronym both match the content.
Describe Visuals in Text
For each image or diagram, ensure there is some text describing it either in a caption or in the main content. If not present, add a one-line description in the document or as metadata in the indexing process. This aids retrieval since the system can find an image by the description.
Add Summaries for Sections (With Terminology Alignment)
If feasible, add a brief summary after each major section or at the top of each document highlighting the key points. For example, a guide might start with "Summary: This document covers troubleshooting steps for pump failures, including checking power, inspecting for leaks, and verifying pressure." This can improve retrieval because the embedding of the summary will capture the overall topic.
Caution: Summaries can reduce retrieval quality if they use different terminology than the detailed content. If users search for "motor overheating" but your summary says "thermal issues," the detailed troubleshooting steps may not surface. Ensure summaries use the same specific terms that appear in the body content. When in doubt, include both the technical term and common synonyms in the summary.
Break Up Overly Large Documents
If one file contains many unrelated troubleshooting topics, consider splitting it into separate files or ensuring separate sections are clearly marked. Smaller, focused documents with clear titles improve retrieval precision. For instance, a 100-page PDF manual could be split into chapters or individual guides per subsystem.
Maintain Metadata
Organize files in directories or naming conventions that encode lightweight metadata. For example, file names or folder names could indicate the product or category ("Pump_Troubleshooting_Guide.pdf" vs "Motor_Troubleshooting_Guide.pdf"). This can be ingested as metadata and used to filter or boost relevance.
Reduce Redundancy and Manage Corpus Size
Remove duplicate content (e.g., older versions of the same guide, or repeated boilerplate in every file). If some images are high-resolution but don't need to be (e.g., a 4K photo where 800x600 would suffice), consider downscaling them to reduce payload. Eliminate images that don't add informational value (e.g., company logos on every document).
On corpus size: Whether 1GB is "large" depends entirely on your infrastructure. For a local deployment with limited compute, 1GB may strain resources. For enterprise cloud deployments, 1GB is trivial - many production RAG systems handle terabytes. Evaluate corpus size relative to your embedding compute budget, vector database capacity, and retrieval latency requirements rather than against arbitrary thresholds.
[bookmark: part3]Part 3: Chunking Strategy
Chunking is arguably the most impactful decision in RAG pipeline design. Poor chunking leads to fragmented context, lost relationships, and degraded answer quality.
Chunk Size Selection
1. Small chunks (100-300 tokens): Higher retrieval precision, but may lose context. Good for FAQ-style content or when answers are self-contained.
1. Medium chunks (300-800 tokens): Balanced tradeoff. Recommended starting point for most document types.
1. Large chunks (800-1500 tokens): Preserves more context but reduces precision. Useful for narrative content where ideas span paragraphs.
1. Overlap (10-20%): Always use overlap between chunks to avoid splitting key information at boundaries. Typical: 50-100 token overlap.
Semantic vs Fixed-Size Chunking
1. Fixed-size: Simple, predictable. Splits at token count regardless of content. Risk: breaks mid-sentence or mid-concept.
1. Semantic/recursive: Respects document structure. Splits at paragraph, section, or sentence boundaries. Preserves coherent units of meaning.
1. Recommendation: Use semantic chunking with a maximum size fallback. Split first on headers/sections, then on paragraphs, with fixed-size as the last resort.
Parent-Child Chunking
Store chunks at multiple granularities: retrieve on smaller chunks (higher precision) but return the parent chunk (more context) to the LLM. This technique gives you the best of both worlds.
Metadata Attachment
Attach source metadata to every chunk: document title, section heading, page number, document date, and any relevant tags. This enables filtered retrieval and helps the LLM cite sources accurately.
[bookmark: part4]Part 4: Multimodal Content Processing (Optional Upgrade)
Skip this section if building text-only RAG. This part covers what you need to add for true multimodal retrieval - finding images from text queries, preserving table structure, and handling diagrams as first-class content.
True multimodal RAG requires processing images, tables, and diagrams natively, not just converting them to text captions.
Image Processing Strategies
1. Vision-Language Models (VLMs): Use models like GPT-4V, Claude, or open-source alternatives (LLaVA, InternVL) to generate detailed descriptions of images. Store both the description embedding and the image for retrieval.
1. CLIP-style embeddings: Embed images directly into the same vector space as text using CLIP, SigLIP, or similar models. Enables text-to-image retrieval without requiring descriptions.
1. OCR for text-heavy images: Diagrams with labels, flowcharts, and screenshots benefit from OCR extraction (Tesseract, DocTR, or cloud APIs). Combine OCR text with VLM description.
1. Diagram-specific handling: Flowcharts, schematics, and technical drawings need structured extraction. Consider specialized tools or prompt VLMs to output structured descriptions (nodes, edges, relationships).
Table Processing
Tables encode relational information. Flattening to bullet points destroys row-column relationships. Better approaches:
1. Markdown tables: Preserve structure in a text-friendly format that embeddings can process.
1. Row-wise statements: Convert each row to a natural language statement: "Error code E01 indicates a power failure, resolved by checking the fuse."
1. Table as separate chunk: Keep tables as atomic units with header context attached. Don't split tables across chunks.
1. Structured extraction: For complex tables, extract to JSON/CSV and store alongside the visual representation.
PDF-Specific Preprocessing
1. Layout detection: Multi-column layouts, sidebars, and callout boxes need layout-aware parsing (LayoutLM, Unstructured.io, or similar tools).
1. Headers/footers: Remove repeated headers, footers, and page numbers that add noise without information.
1. Native PDF vs scanned: Native PDFs allow text extraction; scanned PDFs require OCR. Always check which you have and process accordingly.
[bookmark: part5]Part 5: Embedding and Retrieval Architecture
Embedding Model Selection
1. General-purpose models: OpenAI text-embedding-3, Cohere embed-v3, or open-source (BGE, E5, GTE) work well for most domains.
1. Size variants matter: OpenAI offers text-embedding-3-small (1536 dims, cheaper) and text-embedding-3-large (3072 dims, better quality). For most use cases, small is sufficient and significantly reduces costs.
1. Domain-specific: For specialized vocabulary (legal, medical, engineering), consider fine-tuning or domain-adapted models.
1. Dimension tradeoffs: Higher dimensions capture more nuance but cost more storage and compute. You can also reduce dimensions via API parameters (OpenAI) or truncation. 768-1536 is often the sweet spot.
Hybrid Search
Combine semantic search with keyword search for best results:
1. BM25/TF-IDF: Catches exact matches that semantic search might miss (product codes, error numbers, acronyms).
1. Semantic vectors: Catches conceptual similarity even with different wording.
1. Fusion: Use reciprocal rank fusion (RRF) or weighted combination to merge results from both approaches.
Re-ranking
Initial retrieval (top 20-50 chunks) is fast but imprecise. Apply a cross-encoder re-ranker (Cohere Rerank, BGE-reranker, or similar) to re-score and select the final top-k for the LLM. This significantly improves relevance.
Top-K Selection
Balance context window budget against retrieval depth. Typical ranges: 3-5 chunks for simple queries, 8-15 for complex ones. Monitor for context overflow and diminishing returns when including too many marginally relevant chunks.
[bookmark: part6]Part 6: Prompt Engineering for RAG
Context Presentation
1. Clear delimiters: Wrap retrieved chunks in XML tags or markdown blocks with source attribution.
1. Source metadata: Include document name, section, and page number so the LLM can cite properly.
1. Ordering: Place most relevant chunks first or use explicit relevance indicators.
Instruction Framing
1. Instruct the model to answer based only on provided context, or to clearly indicate when information is not found.
1. Request citations to specific sources in the response.
1. Specify output format expectations (step-by-step, bullet points, paragraph).
Handling Conflicting Information
When retrieved chunks contain contradictory information (e.g., different document versions), instruct the model to surface the conflict, prefer newer sources, or ask for clarification rather than silently choosing one.
[bookmark: part7]Part 7: Quality Metrics and Evaluation
Retrieval Metrics
1. Recall@K: What percentage of relevant chunks appear in the top K results?
1. Precision@K: What percentage of returned chunks are actually relevant?
1. MRR (Mean Reciprocal Rank): How high does the first relevant result appear?
End-to-End Metrics
1. Answer correctness: Does the generated answer match the ground truth? (requires labeled test set)
1. Faithfulness: Is the answer grounded in the retrieved context, or does it hallucinate?
1. Answer relevance: Does the answer actually address the user's question?
Building Ground Truth
1. Collect real user queries from logs or subject matter experts.
1. Annotate which chunks should be retrieved for each query.
1. Write expected answers for end-to-end evaluation.
1. Start simple: For small projects, 20-30 manually tested queries is often enough. Graduate to frameworks like RAGAS or TruLens when you need automated evaluation at scale.
Iterative Testing
After initial ingestion and indexing, test a representative set of queries. If expected information isn't retrieved, investigate: is the chunk missing? Is the embedding not capturing the concept? Is the query phrased differently than the source? Use these insights to refine chunking, add synonyms, or adjust embedding strategy.
[bookmark: part8]Part 8: Edge Cases and Special Considerations
Versioned Documents
When multiple versions of the same document exist, decide on a strategy: keep only the latest, keep all with version metadata, or deduplicate at retrieval time. Users often need the current version but sometimes require historical information.
Time-Sensitive Information
Content with expiration dates (policies, pricing, regulations) should have date metadata. Consider time-weighted retrieval that prefers recent documents or explicit freshness indicators in prompts.
Cross-Document Relationships
Some answers require synthesizing information from multiple documents. Consider query decomposition (breaking complex queries into sub-queries) and multi-hop retrieval strategies for these cases.
Multilingual Content
If documents exist in multiple languages, use multilingual embedding models (e.g., multilingual-e5, mGTE) that map concepts across languages to the same vector space, enabling cross-lingual retrieval.
Access Control
For enterprise deployments, chunks may have different access permissions. Store access control metadata and filter at retrieval time to prevent unauthorized information disclosure.
[bookmark: part9]Part 9: Local Deployment Options
For privacy-sensitive data, cost reduction, or offline/air-gapped environments, local RAG deployment avoids sending data to cloud APIs. Several tools make this accessible without building a custom pipeline.
When Local Deployment Makes Sense
1. Data privacy requirements: Sensitive documents (HR records, legal, medical, proprietary IP) that cannot leave your network.
1. Cost optimization: High query volumes where API costs become prohibitive. Local inference has fixed compute costs.
1. Offline/air-gapped: Environments without internet access (manufacturing floors, secure facilities, field deployments).
1. Latency control: Eliminating network round-trips when response time is critical.
All-in-One Tools
These tools bundle LLM inference, embeddings, and RAG functionality with minimal setup:
1. GPT4All (LocalDocs): Point at a folder of documents; handles chunking, embedding (Nomic Embed), and retrieval automatically. Simple GUI. Limited customization of chunking/retrieval parameters. Good for quick prototypes or non-technical users.
1. LM Studio: Polished GUI for running local models. RAG features via document upload. Focuses on chat experience. Less pipeline customization than programmatic approaches.
1. AnythingLLM: Open-source RAG platform with web UI. Supports multiple LLM backends (Ollama, LM Studio, cloud APIs). More configuration options including chunking size, embedding model selection, and vector store choice.
Local Model Servers (Build Your Own Pipeline)
For full control, use these as components in a custom RAG pipeline:
1. Ollama: Simple CLI and API for running local LLMs. Supports many open models (Llama, Mistral, Phi, Qwen). Easy model management. Pair with LangChain, LlamaIndex, or custom code for RAG.
1. vLLM / TGI: High-performance inference servers for production deployments. Better throughput than Ollama for concurrent requests. More complex setup.
1. llama.cpp / llama-cpp-python: Direct inference library. Maximum control and efficiency. Requires more technical expertise.
Local Embedding Options
1. Nomic Embed (bundled with GPT4All): Solid general-purpose embeddings. 768 dimensions. Good balance of quality and speed.
1. BGE / E5 / GTE: Open-source embedding models via Sentence Transformers or Hugging Face. Multiple size options. Can run on CPU (slower) or GPU.
1. Ollama embeddings: Ollama can serve embedding models (nomic-embed-text, mxbai-embed-large) via API, simplifying deployment.
1. CLIP/SigLIP (for multimodal): Run locally via Hugging Face Transformers for image-text embeddings. Required for true multimodal retrieval without cloud APIs.
Local Vector Databases
1. Postgres + pgvector: Self-hosted Postgres with pgvector extension. Great if you already run Postgres - adds vector search without new infrastructure. Supports filtering, joins with relational data.
1. ChromaDB: Embedded vector store, easy setup, good for prototyping and small-medium corpora.
1. Qdrant: Can run locally or self-hosted. Better performance at scale. Supports filtering and hybrid search.
1. Milvus Lite: Embedded version of Milvus for local development. Scales to full Milvus for production.
1. FAISS: Facebook's library for similarity search. No server required. Fast and memory-efficient. Requires more manual integration.
Tradeoffs: Local vs Cloud
1. Model quality: Local models (7B-70B parameters) lag behind frontier cloud models (GPT-4, Claude) on complex reasoning. Gap is narrowing but still significant for nuanced tasks.
1. Hardware requirements: Quality local inference needs GPU (or Apple Silicon). CPU inference is slow. Budget for hardware or accept latency tradeoffs.
1. Multimodal limitations: Local vision-language models (LLaVA, InternVL) exist but require significant VRAM. Most all-in-one tools (GPT4All, LM Studio) have limited or no multimodal RAG support currently.
1. Maintenance burden: You own model updates, hardware issues, and scaling. Cloud APIs abstract this away.
1. Hybrid approach: Consider local embeddings (no sensitive data leaves) with cloud LLM (only retrieved chunks sent, not full corpus). Balances privacy with quality.
Applying This Guide to Local Deployments
All the document preparation best practices (Parts 2-8) apply regardless of deployment model. However, local deployments have additional considerations:
1. Chunking matters more: Smaller local models have shorter context windows (4K-32K typical vs 128K+ for cloud models). Efficient chunking and top-k selection are critical.
1. Prompt engineering is different: Local models may need simpler, more explicit prompts. Test and iterate with your specific model.
1. Evaluation is essential: Quality varies significantly between local models. Build a test set (Part 7) and measure before committing to a deployment.
1. Start simple: Begin with an all-in-one tool (GPT4All LocalDocs) to validate the use case, then graduate to a custom pipeline if you need more control.
[bookmark: part10]Part 10: Production Hardening
Most RAG tutorials stop at "it works." Production systems need caching, security, fallbacks, and cost controls. This section covers what to add before real users hit your system.
Caching Strategies
Caching reduces latency, cost, and load on your LLM/embedding APIs.
1. Embedding cache: Cache query embeddings to avoid redundant API calls. If a user asks the same question twice, don't re-embed it. Store in Redis, SQLite, or in-memory with TTL.
1. Semantic response cache: Cache full responses keyed by query similarity, not exact match. If a new query is >90% similar to a cached query, return the cached response. Requires storing query embeddings alongside responses.
1. Retrieval cache: Cache retrieved chunks for repeated queries. Less impactful than response caching but useful if embedding API is your bottleneck.
1. Cache invalidation: Set TTL (time-to-live) based on how often your knowledge base changes. For static docs, 24-72 hours is reasonable. Invalidate when you re-index.
Guardrails and Security
Protect your system from abuse and your users from harmful outputs.
1. Rate limiting: Limit requests per user/IP (e.g., 10 requests/minute). Prevents abuse and runaway costs. Use Redis or similar for distributed rate limiting.
1. Prompt injection detection: Detect attempts to override system instructions ("ignore previous instructions..."). Use pattern matching, classifier models, or LLM-based detection.
1. PII detection and redaction: Scan inputs for personally identifiable information (emails, phone numbers, SSNs). Redact before logging or passing to third-party APIs. Libraries: Presidio, scrubadub.
1. Content moderation: Filter toxic, harmful, or off-topic inputs before processing. Use OpenAI Moderation API, Perspective API, or custom classifiers.
1. Output validation: Check LLM responses before returning to user. Ensure no hallucinated URLs, no leaked system prompts, no harmful content.
LLM Fallback Chain
Don't let your app crash when an API goes down.
1. Primary → Fallback → Static: Chain multiple providers. Example: Claude (primary) → GPT (fallback) → static response ("I'm having trouble, please try again").
1. Circuit breaker pattern: After N consecutive failures, stop calling the failing service for a cooldown period. Prevents cascade failures and wasted API calls.
1. Timeout handling: Set aggressive timeouts (10-30 seconds). Don't let users wait forever. Fail fast and try fallback.
1. Graceful degradation: If RAG retrieval fails, can you still answer from LLM knowledge? If LLM fails, can you show cached responses? Design for partial failures.
Context Sufficiency Checking
Before generating, verify you have enough context to answer.
1. Why it matters: If retrieved chunks don't contain the answer, the LLM will hallucinate. Better to say "I don't have information about that" than make something up.
1. Implementation: After retrieval, ask the LLM (or a classifier): "Can this context answer the question?" If no, return a fallback response and log the unanswered question for knowledge base gaps.
1. Confidence thresholds: If top retrieval similarity is below threshold (e.g., 0.3), the query likely isn't covered by your knowledge base. Handle gracefully.
Cost Controls
1. Track token usage: Log input/output tokens per request. Monitor trends. Set alerts for anomalies.
1. Per-user cost caps: Limit spend per user/session. Prevents one user from burning through your budget.
1. Daily/monthly budget limits: Set hard limits at the API provider level and in your app. When hit, fall back to cheaper models or disable service.
1. Model tiering: Use cheaper models for simple queries, expensive models for complex ones. Route based on query classification.
Observability
1. Logging: Log queries, retrieved chunks, responses, latencies, and errors. Essential for debugging and improvement.
1. Metrics: Track cache hit rate, retrieval latency, LLM latency, error rate, cost per query. Dashboard these.
1. Unknown question tracking: Log queries that fail context sufficiency. These are gaps in your knowledge base - prioritize adding this content.
1. User feedback: Add thumbs up/down. Correlate with retrieval quality. Use negative feedback to identify problem areas.
